LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Label-free anti-Müllerian hormone sensor based on polyaniline micellar modified electrode.

Photo by miguelherc96 from unsplash

A label-free electrochemical immunosensor based on polyaniline (PANI) micellar electrode was firstly fabricated for direct AMH detection. To control the size regularity of PANI, a micelle-based method using ammonium peroxydisulfate… Click to show full abstract

A label-free electrochemical immunosensor based on polyaniline (PANI) micellar electrode was firstly fabricated for direct AMH detection. To control the size regularity of PANI, a micelle-based method using ammonium peroxydisulfate (APS) as a reducing agent was employed in the polymerization process. The Anti-AMH antibodies were readily immobilized onto PANI via peptide bond to enhance the sensor specificity and sensitivity. This sensor was applied for the detection of AMH, an ovarian response indicator in female related to residual eggs during a woman's monthly cycle. The sensor performances were systematically investigated by differential pulse voltammetry. The anodic peak current decreases with the increase of AMH concentration owing to blocking of electron transfer by AMH. Under the optimal conditions, this sensor offers high sensitivity with a low detection limit of 0.1 ng mL-1 and a wide linear range of 0.1-4 ng mL-1, which is sensitive enough to indicate the ability to produce eggs during a woman's monthly cycle. Furthermore, this system requires lower sample volume (5 μL), while offers the simple fabrication with low cost and no synthetic challenge and faster analysis compared with a standard ELISA. Ultimately, this sensor was successfully applied for the detection of AMH in human serum with satisfactory results. Thus, it might be an alternative tool for AMH screening in clinical setting.

Keywords: detection; based polyaniline; free anti; label free; sensor

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.