LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High sensitivity and specificity feature detection in liquid chromatography-mass spectrometry data: A deep learning framework.

Photo from wikipedia

Feature detection is a crucial pre-processing step for high-resolution liquid chromatography-mass spectrometry (LC-MS) data analysis. Typical practices based on thresholds or rigid mathematical assumptions can cause ineffective performance in detecting… Click to show full abstract

Feature detection is a crucial pre-processing step for high-resolution liquid chromatography-mass spectrometry (LC-MS) data analysis. Typical practices based on thresholds or rigid mathematical assumptions can cause ineffective performance in detecting low abundance and non-ideal distributed compounds. We herein introduce a novel feature detection method based on deep learning named SeA-M2Net that considers feature detection as an image-based object detection task. By fully employing raw data directly, and integrating all related factors (e.g., LC elution, charge state, and isotope distribution) with two-dimensional pseudo color images to calculate the probability of the presence of the compound, low abundance compounds can be well preserved and observed. More importantly, SeA-M2Net, with deep multilevel and multiscale structures focuses on compound pattern detection in a learned method instead of assuming a mathematical parametric model. All parameters in SeA-M2Net are learned from data in the training procedure, thus allowing for maximum flexibility of pattern distribution deformation. The algorithm is tested on several LC-MS datasets of multiple biological samples obtained from different instruments with varied experimental settings. We demonstrate the superiority of the new approach in handling complex compound patterns (e.g., low abundance, overlapping regions, LC shifts, and missing values). Our experiments indicate that SeA-M2Net outperforms widely used detection methods in terms of detection accuracy.

Keywords: detection; mass spectrometry; chromatography mass; liquid chromatography; feature detection

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.