LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vivo quantification of volatile organoselenium compounds released by bacteria exposed to selenium with HS-SPME-GC-MS. Effect of selenite and selenium nanoparticles.

Photo by claybanks from unsplash

Quantification of volatile organoselenium species released by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), after their growth in the presence of 1 and 2 mg Se·L-1 as both selenite… Click to show full abstract

Quantification of volatile organoselenium species released by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), after their growth in the presence of 1 and 2 mg Se·L-1 as both selenite and chitosan-modified selenium nanoparticles (Ch-SeNPs), was achieved by the application of a method based on headspace solid-phase microextraction (HS-SPME) and in-fiber internal standardization, combined with gas chromatography coupled to mass spectrometry (GC-MS). This method consisted of an initial extraction of the released volatile organoselenium compounds on the SPME fiber, followed by the extraction of internal standard (IS), deuterated dimethyl sulfide (d6-DMS), on the same fiber before its desorption at the injection port of GC-MS. The results showed that the biotransformation of selenite and Ch-SeNPs into volatile organoselenium compounds was dependent on both the type of bacterial species and the chemical form of selenium (Se) administered. In this sense, E. coli was able to biotransform both selenite and Ch-SeNPs into dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) while S. aureus, biotransformed selenite into DMSe and DMDSe and, Ch-SeNPs only into DMDSe. Additionally, the formation of a volatile mixed sulfur/selenium compound, dimethyl selenenyl sulfide (DMSeS), from Se in nanoparticulated form has been detected for the first time.

Keywords: quantification volatile; selenium; volatile organoselenium; organoselenium compounds; selenium nanoparticles

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.