LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Size-modulated optical property of gold nanorods for sensitive and colorimetric detection of thiourea in fruit juice.

Photo from wikipedia

As an important sulfur compound, thiourea (TU) has caused great concern because of its wide application as well as its serious toxicity and hazard to the environment. Thus, it is… Click to show full abstract

As an important sulfur compound, thiourea (TU) has caused great concern because of its wide application as well as its serious toxicity and hazard to the environment. Thus, it is necessary to develop a sensitive and selective method for TU analysis. In this work, gold nanorods (AuNRs) acted as an optical probe to realize the sensitive and colorimetric detection of TU. In HCl medium, Fe3+ at low concentration was difficult to oxide Au0 to form Au+ because of the high redox potential or the positive Gibbs free energy change. However, this process was possible when TU was present since the association constant between Au+ and TU is great enough to bind with TU to form a stable complex to further promote the etching of AuNRs, resulting in the lower aspect ratio of AuNRs with the blue shift and intensity decrease in extinction spectra, accompanied by the divisive colors of AuNRs solution or colorful dark-field light scattering imaging of single AuNR. The blue-shift of AuNRs longitudinal plasmon resonance absorption (LPRA) band was proportional to the concentration of TU in the range of 1-250 nM and the limit of detection (3σ/k) was as low as 0.4 nM. In addition, the colorimetric method was proven with high selectivity in the presence of potential interfering compounds, which was successfully applied to the detection of TU in fruit juice samples. This proposed colorimetric method provides a simple, sensitive yet selective measurement tool for TU sensing, which may offer new opportunities in the development of colorimetric sensors for food safety in the future.

Keywords: detection; colorimetric detection; thiourea; gold nanorods; fruit juice; sensitive colorimetric

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.