One of the critical challenges in the simultaneous determination of As3+ and Cu2+ by stripping voltammetry is the overlapping of their oxidation peaks. Therefore, the engineering of nanostructured sensors in… Click to show full abstract
One of the critical challenges in the simultaneous determination of As3+ and Cu2+ by stripping voltammetry is the overlapping of their oxidation peaks. Therefore, the engineering of nanostructured sensors in order to uplift their electrochemical performance is a significant issue for the codetection of As3+ and Cu2+. Herein, we modified a glassy carbon electrode with a new nanocomposite based on poly methyldopa along with gold nanoparticles immobilized on the surface of magnetic graphene oxide (GCE/GO/Fe3O4@PMDA/AuNPs) that can determine As3+ and Cu2+ with great sensitivity. Optimization of the measurement conditions by square wave stripping voltammetry (SWSV) caused the oxidation peaks of As3+ and Cu2+ to be distinguished significantly from each other, while the peak currents of As3+ and Cu2+ increased 9-12 fold, respectively, compared to the bare electrode. The proposed electrode exhibits low detection limits (S/N ≥ 3): 0.15 ppb for As3+ and 0.11 ppb for Cu2+. The GCE/GO/Fe3O4@PMDA/AuNPs also has good linearity over a wide concentration range from 5 to 500 ppb for As3+ and 0.5-750 ppb for Cu2+. The good recovery values were obtained for the analysis of As3+ and Cu2+ in pool and drinking water samples.
               
Click one of the above tabs to view related content.