LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a simple and rapid screening method for the detection of 1-(3-chlorophenyl)piperazine in forensic samples.

Photo from wikipedia

1-(3-chlorophenyl) piperazine (mCPP) is a synthetic drug with hallucinogenic effects that has often been found in seized samples. In this context, easy to use point-of-care tests can be of great… Click to show full abstract

1-(3-chlorophenyl) piperazine (mCPP) is a synthetic drug with hallucinogenic effects that has often been found in seized samples. In this context, easy to use point-of-care tests can be of great value in preliminary forensic analysis. Herein, we proposed a simple, fast, and portable electrochemical method for the detection of mCPP in seized samples. The method is based on the use of disposable screen-printed carbon electrodes (SPCE) and rapid screening procedures by square-wave voltammetry using minimal sample sizes (100 μL). mCPP showed an irreversible electrochemical oxidation process at +0.65 V on SPCE (vs Ag) using 0.04 mol L-1 Britton Robinson (BR) buffer solution (pH 7) as the supporting electrolyte. The proposed method exhibited a linear correlation (r = 0.998) between peak current and mCPP concentration in the range of 1-30 μmol L-1 (LOD = 0.1 μmol L-1). Interference studies were performed for adulterants and other classes of drugs of abuse, which can also be found in seized samples containing mCPP, such as caffeine, amphetamine, methamphetamine, 1-benzylpiperazine, 3,4-methylenedioxymethamphetamine, methylone, mephedrone, ethylone and 3, 4-methylenedioxypyrovalerone. The developed method presents great potential as a rapid and simple screening tool to detect mCPP in forensic samples.

Keywords: forensic samples; chlorophenyl piperazine; rapid screening; method detection

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.