LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gas phase microdialysis and chemiluminescence detection: A small, fast, selective, and sensitive method to monitor aqueous nitric oxide.

Photo from wikipedia

A method using a gas-phase microdialysis probe interfaced with a modified commercially available nitric oxide (NO) detector is shown to selectively measure aqueous NO at low μM levels with high… Click to show full abstract

A method using a gas-phase microdialysis probe interfaced with a modified commercially available nitric oxide (NO) detector is shown to selectively measure aqueous NO at low μM levels with high selectivity. The detector measures chemiluminescence resulting from the gas-phase reaction of NO with ozone. The microdialysis probe is small enough (3 mm × 200 μm) to be used in vivo. Because the processes of extraction across the microdialysis membrane and transport from the probe to the detector are both very fast, the response time is shorter than 5 s. The method was verified using two different quantifiable sources of NO: nitrite and methylamine hexamethylene methylamine (MAHMA) NONOates. To demonstrate ruggedness and to show the impact of matrix on NO generation, the method was used to measure NO in a cell culture matrix. The continuous extraction, fast response time, and rugged nature make the method useful for monitoring NO in biological applications. Our results also show that predicting NO concentration for in vitro experiments based on NONOate concentration may be a poor assumption due to the pH dependence of NO formation and the rapid decline in NO concentration.

Keywords: gas phase; microdialysis; phase microdialysis; method

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.