LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A direct electron transfer formaldehyde dehydrogenase biosensor for the determination of formaldehyde in river water.

Photo by thenata from unsplash

In this work, we report the construction of a direct electron transfer (DET) biosensor based on NAD-dependent formaldehyde dehydrogenase from Pseudomonas sp. (FDH) immobilized on the gold nanoparticle-modified gold electrode.… Click to show full abstract

In this work, we report the construction of a direct electron transfer (DET) biosensor based on NAD-dependent formaldehyde dehydrogenase from Pseudomonas sp. (FDH) immobilized on the gold nanoparticle-modified gold electrode. To the best of our knowledge, a DET for FDH was achieved for the first time - the oxidation of formaldehyde started at a low electrode potential of -190 mV vs. Ag/AgCl and reached a maximum current density of 1100 nA cm-2 at 200 mV vs. Ag/AgCl. Also, the designed electrode was insensitive to substrate inhibition (in comparison to the free enzyme) and operated in solutions with formaldehyde concentrations up to 10 mM. The electrode was used and characterized as a mediatorless biosensor for the detection of formaldehyde. The biosensor demonstrated a limit of detection (0.05 mM), linear range from 0.25 to 2.0 mM, the sensitivity of 178.9 nA mM cm-2, high stability and selectivity. The biosensor has been successfully tested for the determination of added formaldehyde concentration in river water samples, thus the developed electrode could be applied for a fast, inexpensive and simple measurement of formaldehyde in various media.

Keywords: direct electron; biosensor; electron transfer; formaldehyde dehydrogenase; river water

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.