LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ SERS readout strategy to improve the reliability of beta-galactosidase activity assay based on X-gal staining in shortening incubation times.

Photo by homajob from unsplash

Beta-galactosidase (β-gal) activity is closed related with senescence cells and aging-associated diseases, however, the traditional readout of β-gal activity based on X-gal staining was limited to low sensitivity in short… Click to show full abstract

Beta-galactosidase (β-gal) activity is closed related with senescence cells and aging-associated diseases, however, the traditional readout of β-gal activity based on X-gal staining was limited to low sensitivity in short incubation times and false positives in long incubation times. Here, we expose the potential role of insoluble X-gal hydrolysates in causing false positives by diffusion pollution depending on organic medium and then propose the in-situ Surface-enhanced Raman spectroscopy (SERS) readout strategy to identify and locate β-gal positive cells. By building the blue-white screening model and fabricating SERS-active needle sensor, the sensitive detection of β-gal has been realized with the detection limit of less than 1 nmol L-1. The in-situ SERS readout strategy is proved to be necessary and feasible to improve the reliability of X-gal staining assay through shortening the time to a few hours. Moreover, its application was also preliminarily evaluated to analyse individual cells and tissues, which showed the well consistency for judgement of β-gal activity cells at different times. Consequently, by improving reliability and reducing time consumption, this SERS readout strategy may be of great significance to promote the application of X-gal staining assay in biology and biomedicine.

Keywords: gal; readout strategy; gal staining; sers readout; activity

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.