LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A portable and quantitative detection of microRNA-21 based on cascade enzymatic reactions with dual signal outputs.

Photo from wikipedia

MicroRNAs (miRNAs) are physiological status-related molecules which can be used as biomarkers for diseases, such as cancers. The point-of-care testing (POCT) of miRNAs has great application potential in early diagnosis… Click to show full abstract

MicroRNAs (miRNAs) are physiological status-related molecules which can be used as biomarkers for diseases, such as cancers. The point-of-care testing (POCT) of miRNAs has great application potential in early diagnosis and process monitoring of diseases. In this paper, a fast and dual signal outputs detection for microRNA-21 (miRNA-21) was established by using both personal glucose meter (PGM) and fluorescence spectrometer. In such an assay protocol, a dual-functional hairpin structure was rationally designed to recognize miRNA-21 and serve as the carrier of the reporter adenosine monophosphate (AMP). The hairpin structure can be specifically degraded by exonuclease T (Exo T) after hybridization with the target miRNA-21, releasing a large amount of AMP as the reporter. Then a smart signal conversion machinery composed of four enzymes and the corresponding substrates was employed to produce dual output signals through enzymatic cascade reactions. The machinery includes two parts: an adenosine triphosphate (ATP) generation system and a glucose consumption/NADPH production system. The produced AMP in the former step triggers the production of ATP, and subsequently the consumption of glucose and the production of NADPH. The changes of both glucose and NADPH are proportional to the concentration of miRNA-21, and can be determined by PGM and fluorescence spectrometer, respectively. Besides, the build-in substrate-recycling mechanism achieves signal amplification of the cascade enzymatic reactions. Under the optimal experimental conditions, the PGM signal is linearly correlated with the concentration of miRNA-21 in the range from 5 to 150 nM, with the limit of detection (LOD) of 3.65 nM. The LOD of fluorescence detection mode is even lowered to 0.03 nM. The miRNA-21-spiked serum samples, as well as the actual serum samples from cancer patients, have been successfully detected by this detection strategy. Thus the established assay provides a POCT solution for cancer diagnosis and prognosis.

Keywords: detection microrna; detection; dual signal; signal outputs; cascade enzymatic; enzymatic reactions

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.