Cancer is a complex disease with very high incidence and mortality rates every year. However, cancer drug resistance greatly mitigates the cure rates of tumors, and cytochrome P450 (CYP450) plays… Click to show full abstract
Cancer is a complex disease with very high incidence and mortality rates every year. However, cancer drug resistance greatly mitigates the cure rates of tumors, and cytochrome P450 (CYP450) plays an important role in the development of cisplatin resistance. We developed the aggregation-induced emission luminogen (AIEgen) TPE-CYP to monitor the changes in CYP450. The TPE-CYP fluorescent probe was successfully used to assess CYP450 levels in tumor cells and tumor tissue sections. This study presented that CYP450 level in HepG2/DDP cells (cisplatin-resistant cells) was higher than that in HepG2 cells, and the inhibition of CYP450 by 1-ABT effectively improved the tumor resistance. Thus, CYP450 plays a key role in the development of tumor resistance. The synergistic effect of 1-ABT and the chemotherapeutic agent cisplatin was superior to that of cisplatin alone in tumor-bearing mice. The TPE-CYP probe will provide an idea for the clinical implementation of individualized tumor treatment strategies, through the accurate monitoring of CYP450.
               
Click one of the above tabs to view related content.