LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An aggregation-induced emission fluorescence probe for evaluating the effect of CYP450 changes under tumor chemotherapy.

Photo from wikipedia

Cancer is a complex disease with very high incidence and mortality rates every year. However, cancer drug resistance greatly mitigates the cure rates of tumors, and cytochrome P450 (CYP450) plays… Click to show full abstract

Cancer is a complex disease with very high incidence and mortality rates every year. However, cancer drug resistance greatly mitigates the cure rates of tumors, and cytochrome P450 (CYP450) plays an important role in the development of cisplatin resistance. We developed the aggregation-induced emission luminogen (AIEgen) TPE-CYP to monitor the changes in CYP450. The TPE-CYP fluorescent probe was successfully used to assess CYP450 levels in tumor cells and tumor tissue sections. This study presented that CYP450 level in HepG2/DDP cells (cisplatin-resistant cells) was higher than that in HepG2 cells, and the inhibition of CYP450 by 1-ABT effectively improved the tumor resistance. Thus, CYP450 plays a key role in the development of tumor resistance. The synergistic effect of 1-ABT and the chemotherapeutic agent cisplatin was superior to that of cisplatin alone in tumor-bearing mice. The TPE-CYP probe will provide an idea for the clinical implementation of individualized tumor treatment strategies, through the accurate monitoring of CYP450.

Keywords: probe; aggregation induced; induced emission; resistance; cyp450

Journal Title: Talanta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.