LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A new spallation mechanism of thermal barrier coatings on aero-engine turbine blades

Photo from wikipedia

ABSTRACT Laboratory experiments were conducted to study the spallation behaviour of thermal barrier coatings (TBCs) on aero-engine turbine blades manufactured by the electron-beam physical vapour deposition technique (EB-PVD). Intact blades… Click to show full abstract

ABSTRACT Laboratory experiments were conducted to study the spallation behaviour of thermal barrier coatings (TBCs) on aero-engine turbine blades manufactured by the electron-beam physical vapour deposition technique (EB-PVD). Intact blades were heated at temperature 1135°C in a furnace for certain time and then cooled to the room temperature in the laboratory condition. It was found that no spallation occurred during cooling, but spallation happened at constant room temperature after cooling. The spallation mechanism is studied by using the mechanical model developed (Harvey 2017 and Wang 2017), which are based on the hypothesis of pockets of energy concentration (PECs). Some observations of the spallation behaviour are well predicted by the model.

Keywords: spallation; aero engine; turbine blades; thermal barrier; barrier coatings; engine turbine

Journal Title: Theoretical and Applied Mechanics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.