Abstract This study addresses the issue of ship accidental grounding as an impact phenomenon, with the assumption that an interaction of its structure with the oceanic seabed (obstruction), idealized as… Click to show full abstract
Abstract This study addresses the issue of ship accidental grounding as an impact phenomenon, with the assumption that an interaction of its structure with the oceanic seabed (obstruction), idealized as rock topology, is capable of initiating a so-called hard ground scenario. This occurrence variation was considered by performing two main instances, encompassing raking and stranding, often experienced by oil/chemical tankers as thin-walled structures. In addition, a failure criterion was implemented on the structural geometry, in order to define its ultimate limit and possible damage, during interaction with the obstructions. Subsequently, the analysis results were compiled to assess structural crashworthiness as well as progressive failure of the double bottom part of the tanker, where energy criterion indicated the raking to be more destructive. Meanwhile, detailed observation of the failure sequence indicated the stranding to have successfully breached the inner bottom shell.
               
Click one of the above tabs to view related content.