LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ evolved gas analysis assisted thermogravimetric (TG-FTIR and TG/DTA–MS) studies on non-activated copper benzene-1,3,5-tricarboxylate

Photo from wikipedia

Abstract The results of a complete thermogravimetric study of copper benzene-1,3,5-tricarboxylate (Cu-BTC or HKUST-1) are reported here together with mass spectrometry (MS) and Fourier transform infrared spectroscopy (FTIR) analyses of… Click to show full abstract

Abstract The results of a complete thermogravimetric study of copper benzene-1,3,5-tricarboxylate (Cu-BTC or HKUST-1) are reported here together with mass spectrometry (MS) and Fourier transform infrared spectroscopy (FTIR) analyses of the evolved gases up to 800 °C. Oxidative and inert conditions were applied to reveal the stoichiometry of the as-received synthesis product. In spite of using a water-ethanol mixture during the synthesis and the filtration, only water is retained in the pores. It is proposed that the thermolytic release of ethanol in the temperature range 150–250 °C originates from ethanol-benzene-1,3,5-tricarboxylate (BTC) esters situated on the surface of the HKUST-1 crystal, and which limit the size of the developing crystals during the synthesis.

Keywords: ftir; benzene tricarboxylate; copper benzene; tricarboxylate

Journal Title: Thermochimica Acta
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.