LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent advances in the synthesis, structural diversity, and applications of mesoionic 1,2,3-triazol-5-ylidene metal complexes

Photo by viazavier from unsplash

Abstract Beyond the classic N-heterocyclic carbenes (NHCs) there is a subclass of NHCs called mesoionic carbenes (MICs). This review focuses on recent advances in the area of 1,2,3-triazol-5-ylidenes as the… Click to show full abstract

Abstract Beyond the classic N-heterocyclic carbenes (NHCs) there is a subclass of NHCs called mesoionic carbenes (MICs). This review focuses on recent advances in the area of 1,2,3-triazol-5-ylidenes as the most abundant class of MICs and their metal complexes. The study of mesoionic 1,2,4- and 1,3,4-trisubstituted 1,2,3-triazol-5-ylidene transition metal complexes is a research area with a history of just ∼10 years. During this relatively short period, hundreds of these complexes have appeared in the literature, reflecting their high stability and simpler synthesis compared with NHCs. Specifically, this review is focused on advances in the synthesis of 1,2,3-triazol-5-ylidene metal complexes derived from palladium, silver, gold, ruthenium, iridium, rhodium, iron, molybdenum, cobalt, nickel, platinum, and osmium, together with their catalytic, medicinal, and photophysical applications.

Keywords: ylidene metal; triazol ylidene; advances synthesis; metal; metal complexes; recent advances

Journal Title: Tetrahedron
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.