LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A continuous flow-batch hybrid reactor for commodity chemical synthesis enabled by inline NMR and temperature monitoring

Photo from wikipedia

Inline, real time NMR and temperature measurements have been used to optimise the continuous flow synthesis of difluoromethyltrimethylsilane (TMSCF2H) by the reduction of the Ruppert-Prakash reagent (TMSCF3). These measurements were… Click to show full abstract

Inline, real time NMR and temperature measurements have been used to optimise the continuous flow synthesis of difluoromethyltrimethylsilane (TMSCF2H) by the reduction of the Ruppert-Prakash reagent (TMSCF3). These measurements were used to maximise the space-time-yield, while ensuring this exothermic process remains safe. In this way, a three-fold increase in space-time-yield was achieved compared to the reported batch procedure, isolating 25 g of pure TMSCF2H after 105 min.

Keywords: nmr temperature; flow batch; continuous flow; synthesis; batch hybrid

Journal Title: Tetrahedron
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.