LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vibrational analysis of a rate-slowing conformational kinetic isotope effect

Photo by _louisreed from unsplash

Abstract An enthalpy-entropy approach to analyzing a rate-slowing conformational kinetic isotope effect (CKIE) in a deuterated doubly-bridged biaryl system is described. The computed isotope effect (kH/kD = 1.075, 368 K) agrees well with… Click to show full abstract

Abstract An enthalpy-entropy approach to analyzing a rate-slowing conformational kinetic isotope effect (CKIE) in a deuterated doubly-bridged biaryl system is described. The computed isotope effect (kH/kD = 1.075, 368 K) agrees well with the measured value (kH/kD = 1.06, 368 K). The rate-slowing (normal isotope effect) nature of the computed CKIE is shown to originate from a vibrational entropy contribution defined by the twenty lowest frequency normal modes in the ground state and transition state structures. This normal entropy contribution is offset by an inverse vibrational enthalpy contribution, which also arises from the twenty lowest frequency normal modes. Zero point vibrational energy contributions are found to be relatively small when all normal modes are considered. Analysis of the HZPE, Hvib, and Svib energy terms arising from the low frequency vibrational modes reveals their signs and magnitudes are determined by larger vibrational energy differences in the labeled and unlabeled ground state structures.

Keywords: isotope; rate slowing; isotope effect; slowing conformational

Journal Title: Tetrahedron
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.