LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Principles of Chromosome Architecture Revealed by Hi-C.

Photo from wikipedia

Chromosomes are folded and compacted in interphase nuclei, but the molecular basis of this folding is poorly understood. Chromosome conformation capture methods, such as Hi-C, combine chemical crosslinking of chromatin… Click to show full abstract

Chromosomes are folded and compacted in interphase nuclei, but the molecular basis of this folding is poorly understood. Chromosome conformation capture methods, such as Hi-C, combine chemical crosslinking of chromatin with fragmentation, DNA ligation, and high-throughput DNA sequencing to detect neighboring loci genome-wide. Hi-C has revealed the segregation of chromatin into active and inactive compartments and the folding of DNA into self-associating domains and loops. Depletion of CTCF, cohesin, or cohesin-associated proteins was recently shown to affect the majority of domains and loops in a manner that is consistent with a model of DNA folding through extrusion of chromatin loops. Compartmentation was not dependent on CTCF or cohesin. Hi-C contact maps represent the superimposition of CTCF/cohesin-dependent and -independent folding states.

Keywords: dna; cohesin; ctcf cohesin; principles chromosome; architecture revealed; chromosome architecture

Journal Title: Trends in biochemical sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.