LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

4-Hydroxy-2-nonenal in food products: A review of the toxicity, occurrence, mitigation strategies and analysis methods

Photo from wikipedia

Abstract Background Lipid peroxidation yields a large number of aldehydes and carbonyl-containing compounds, of which the reactive and toxic compound 4-hydroxy-2-nonenal (4-HNE) derived from ω-6 polyunsaturated fatty acids (ω-6 PUFAs)… Click to show full abstract

Abstract Background Lipid peroxidation yields a large number of aldehydes and carbonyl-containing compounds, of which the reactive and toxic compound 4-hydroxy-2-nonenal (4-HNE) derived from ω-6 polyunsaturated fatty acids (ω-6 PUFAs) is the most extensively studied. The high reactivity of 4-HNE enables this compound to crosslink with various biomolecules and thus contribute to the pathological processes of several diseases, such as atherosclerosis, cancer, diabetes mellitus, and neurodegenerative disorders. Scope and approach From the perspective of food safety, the emergence of lipid peroxidation contaminants in foodstuffs remains a major concern of consumers, health departments, and industries. This review highlights the latest developments regarding the formation pathways, toxicity, analysis methods, occurrence in foodstuff, and mitigation strategies for 4-HNE. Future prospects on measuring and controlling 4-HNE in food are also discussed. Key findings and conclusions The determination of 4-HNE levels in different types of foods indicates that PUFAs-rich vegetable oil and oil-based food are major intake sources of 4-HNE. Considering the toxicity of 4-HNE, sensitive detection techniques combined with feasible control methods should be an effective solution for food quality maintenance and safety assurance. However, current detection methods and 4-HNE control strategies possess inherent advantages and limitations. Therefore, effective 4-HNE detection and new controlling technologies that are practically viable at the industrial level need to be developed.

Keywords: mitigation strategies; hydroxy nonenal; toxicity; hne; food; analysis methods

Journal Title: Trends in Food Science and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.