In this paper, we calculate the image of the connective and periodic rational equivariant complex $K$-theory spectrum in the algebraic model for naive-commutative ring $G$-spectra given by Barnes, Greenlees and… Click to show full abstract
In this paper, we calculate the image of the connective and periodic rational equivariant complex $K$-theory spectrum in the algebraic model for naive-commutative ring $G$-spectra given by Barnes, Greenlees and K\k{e}dziorek for finite abelian $G$. Our calculations show that these spectra are unique as naive-commutative ring spectra in the sense that they are determined up to weak equivalence by their homotopy groups. We further deduce a structure theorem for module spectra over rational equivariant complex $K$-theory.
               
Click one of the above tabs to view related content.