LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Naive-commutative ring structure on rational equivariant K-theory for abelian groups

Photo by arunwithideas from unsplash

In this paper, we calculate the image of the connective and periodic rational equivariant complex $K$-theory spectrum in the algebraic model for naive-commutative ring $G$-spectra given by Barnes, Greenlees and… Click to show full abstract

In this paper, we calculate the image of the connective and periodic rational equivariant complex $K$-theory spectrum in the algebraic model for naive-commutative ring $G$-spectra given by Barnes, Greenlees and K\k{e}dziorek for finite abelian $G$. Our calculations show that these spectra are unique as naive-commutative ring spectra in the sense that they are determined up to weak equivalence by their homotopy groups. We further deduce a structure theorem for module spectra over rational equivariant complex $K$-theory.

Keywords: naive commutative; rational equivariant; theory; structure; commutative ring

Journal Title: Topology and its Applications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.