LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting drug-induced liver injury: The importance of data curation

Photo from wikipedia

Drug-induced liver injury (DILI) is a major issue for both patients and pharmaceutical industry due to insufficient means of prevention/prediction. In the current work we present a 2-class classification model… Click to show full abstract

Drug-induced liver injury (DILI) is a major issue for both patients and pharmaceutical industry due to insufficient means of prevention/prediction. In the current work we present a 2-class classification model for DILI, generated with Random Forest and 2D molecular descriptors on a dataset of 966 compounds. In addition, predicted transporter inhibition profiles were also included into the models. The initially compiled dataset of 1773 compounds was reduced via a 2-step approach to 966 compounds, resulting in a significant increase (p-value < 0.05) in model performance. The models have been validated via 10-fold cross-validation and against three external test sets of 921, 341 and 96 compounds, respectively. The final model showed an accuracy of 64% (AUC 68%) for 10-fold cross-validation (average of 50 iterations) and comparable values for two test sets (AUC 59%, 71% and 66%, respectively). In the study we also examined whether the predictions of our in-house transporter inhibition models for BSEP, BCRP, P-glycoprotein, and OATP1B1 and 1B3 contributed in improvement of the DILI mode. Finally, the model was implemented with open-source 2D RDKit descriptors in order to be provided to the community as a Python script.

Keywords: induced liver; predicting drug; liver injury; drug induced

Journal Title: Toxicology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.