LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Involvement of the anti-inflammatory, anti-apoptotic, and anti-secretory activity of bee venom in its therapeutic effects on acetylsalicylic acid-induced gastric ulceration in rats.

Photo from wikipedia

Acetylsalicylic acid (ASA) is the most highly consumed pharmaceutical product worldwide. Importantly, gastrointestinal ulceration due to ASA is a major complication. Hence, the present work aimed to examine, for the… Click to show full abstract

Acetylsalicylic acid (ASA) is the most highly consumed pharmaceutical product worldwide. Importantly, gastrointestinal ulceration due to ASA is a major complication. Hence, the present work aimed to examine, for the first time, the healing properties of bee venom (BV) in acute gastric ulceration induced by ASA. Forty adult male Sprague-Dawley rats were divided into four groups that received distilled water only, ASA (500 mg/kg BW) twice daily for 3 days, ASA for 3 days followed by BV (2 mg/kg BW) for 7 days, or ASA for 3 days followed by ranitidine hydrochloride (50 mg/kg BW) for 7 days. Haematological analysis, haemostatic evaluation, and inflammatory marker estimation were performed. Rat stomachs were collected for ulcer scoring, gene expression analysis, oxidative stress assays, histopathological and immunohistochemical examinations, and tissue eosinophil scoring. The results revealed that BV markedly decreased the ulcer index, pro-inflammatory cytokine levels, malondialdehyde levels, BAX distribution, caspase-3 expression, and tissue eosinophil levels. Additionally, significant increases in antioxidant enzymes and heat shock protein 70 localization in gastric tissue were evident following BV treatment after ASA exposure. Also, BV has been found to attenuate the haematological, haemostatic, and histopathological alterations induced by ASA. Our findings collectively indicate that the gastroprotective effect of BV against ASA-induced ulceration in rats is mediated by its antioxidant, anti-inflammatory, anti-apoptotic, and anti-secretory properties.

Keywords: acetylsalicylic acid; inflammatory; ulceration rats; bee venom; gastric ulceration; ulceration

Journal Title: Toxicology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.