LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Changes in murine respiratory dynamics induced by aerosolized carfentanil inhalation: efficacy of naloxone and naltrexone.

Photo from wikipedia

Carfentanil (CRF) is an extremely potent opioid capable of inducing fatal respiratory depression. Naloxone (NX) and naltrexone (NTX) are opioid antagonists for which the efficacy against CRF remains largely unexplored.… Click to show full abstract

Carfentanil (CRF) is an extremely potent opioid capable of inducing fatal respiratory depression. Naloxone (NX) and naltrexone (NTX) are opioid antagonists for which the efficacy against CRF remains largely unexplored. In this study, the effects of aerosolized CRF on respiratory function were investigated using adult male CD-1 mice. Mice were exposed to 0.4 mg/m3 of CRF for 15 min using custom whole-body plethysmograph units. Minute volume (MV), respiratory frequency (f), duty cycle (DC), and tidal volume (TV) were monitored and compared to control animals exposed to aerosolized H2O. CRF exposure induced respiratory depression, characterized by a marked decrease in MV, which was sustained throughout 24 hours post-exposure. Prophylactic and therapeutic treatment with intramuscular (i.m.) NX marginally improved MV, with slight dose-dependent effects. Analogous treatment with i.m. NTX returned MV to baseline levels, with all doses and intervention times performing similarly. Despite improvements in MV, treatment administration did not reverse changes in DC, a measure of respiratory timing. Overall, NX and NTX administration alleviated volumetric aspects of opioid-induced respiratory toxicity, while changes in respiratory timing remained unresolved throughout post-exposure observation. These sustained changes and differences in recovery between two aspects of respiratory dynamics may provide insights for further exploration into the underlying mechanism of action of opioids and opioid antagonists.

Keywords: naloxone naltrexone; changes murine; respiratory; carfentanil; respiratory dynamics

Journal Title: Toxicology letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.