LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aconitine induces mitochondrial energy metabolism dysfunction through inhibition of AMPK signaling and interference with mitochondrial dynamics in SH-SY5Y cells.

Photo from wikipedia

Aconitine, a highly toxic alkaloid derived from Aconitum L., affects the central nervous system and peripheral nervous system. However, the underlying mechanism of aconitine-induced neurotoxicity remains unclear. This study investigates… Click to show full abstract

Aconitine, a highly toxic alkaloid derived from Aconitum L., affects the central nervous system and peripheral nervous system. However, the underlying mechanism of aconitine-induced neurotoxicity remains unclear. This study investigates the effects and mechanism of aconitine on mitochondrial energy metabolism in SH-SY5Y cells. Results demonstrated that aconitine exposure suppressed cell proliferation and led to an increase in reactive oxygen species (ROS) and excessive lactate dehydrogenase (LDH) release. Aconitine (400 μmol/L) induced abnormal mitochondrial energy metabolism that quantified by the significant decrease in ATP production, basal respiration, proton leak, maximal respiration, and succinate dehydrogenase (SDH) activity. Phosphorylation of AMPK was significantly reduced in aconitine-treated SH-SY5Y cells. The AMPK activator AIACR pretreatment effectively promoted ATP production to ameliorate mitochondrial energy metabolism disorder caused by aconitine. Mitochondrial biosynthesis was inhibited after treatment with 400 µmol/L aconitine, which was characterized by mitochondria number, TFAM expression, and mtDNA copy number. Moreover, aconitine prompted the down-regulation of mitochondrial fusion proteins OPA1, Mfn1 and Mfn2, and the up-regulation of mitochondrial fission proteins p-Drp1 and p-Mff. These results suggest that aconitine induces mitochondrial energy metabolism dysfunction in SH-SY5Y cells, which may involve the inhibition of AMPK signaling and abnormal mitochondrial dynamics.

Keywords: energy metabolism; aconitine induces; sy5y cells; mitochondrial energy

Journal Title: Toxicology letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.