LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sphingolipid imbalance and inflammatory effects induced by uremic toxins in heart and kidney cells are reversed by dihydroceramide desaturase 1 inhibition.

Photo by unstable_affliction from unsplash

Non-dialysable protein-bound uremic toxins (PBUTs) contribute to the development of cardiovascular disease (CVD) in chronic kidney disease (CKD) and vice versa. PBUTs have been shown to alter sphingolipid imbalance. Dihydroceramide… Click to show full abstract

Non-dialysable protein-bound uremic toxins (PBUTs) contribute to the development of cardiovascular disease (CVD) in chronic kidney disease (CKD) and vice versa. PBUTs have been shown to alter sphingolipid imbalance. Dihydroceramide desaturase 1 (Des1) is an important gatekeeper enzyme which controls the non-reversible conversion of sphingolipids, dihydroceramide, into ceramide. The present study assessed the effect of Des1 inhibition on PBUT-induced cardiac and renal effects in vitro, using a selective Des1 inhibitor (CIN038). Des1 inhibition attenuated hypertrophy in neonatal rat cardiac myocytes and collagen synthesis in neonatal rat cardiac fibroblasts and renal mesangial cells induced by the PBUTs, indoxyl sulfate and p-cresol sulfate. This is at least attributable to modulation of NF-κB signalling and reductions in β-MHC, Collagen I and TNF-α gene expression. Lipidomic analyses revealed Des1 inhibition restored C16-dihydroceramide levels reduced by indoxyl sulfate. In conclusion, PBUTs play a critical role in mediating sphingolipid imbalance and inflammatory responses in heart and kidney cells, and these effects were attenuated by Des1 inhibition. Therefore, sphingolipid modifying agents may have therapeutic potential for the treatment of CVD and CKD and warrant further investigation.

Keywords: uremic toxins; sphingolipid imbalance; inhibition; dihydroceramide desaturase; kidney

Journal Title: Toxicology letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.