LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Indoleamine 2,3-Dioxygenase Activation by Interferon Gamma in Vascular Endothelial Cells Requires Noncanonical NF-κB Signaling.

Photo by nci from unsplash

Indoleamine 2,3-dioxygenase (IDO) is an important enzyme in immune response regulation; cells that express IDO can suppress T-cell responses. Endothelial cells (ECs) play an important role in graft rejection. Therefore,… Click to show full abstract

Indoleamine 2,3-dioxygenase (IDO) is an important enzyme in immune response regulation; cells that express IDO can suppress T-cell responses. Endothelial cells (ECs) play an important role in graft rejection. Therefore, we investigated the role of IDO expression by vascular ECs in immunoregulation. We demonstrated that interferon gamma can upregulate IDO expression in cultured ECs. Moreover, IDO induction by interferon gamma required IKKα activation, a part of the noncanonical NF-κB signaling pathway. In addition, IκB kinase α (IKKα) silencing resulted in significantly reduced IPO expression, demonstrating an essential role of NF-κB signaling pathway in IDO activation in vitro. These results may have an implication for regulating the immune response to alloantigens. The results obtained are important not only in understanding the role of ECs in the regulation of the transplantation immune response, but also in determining a potential therapeutic target for inhibiting allograft rejection.

Keywords: noncanonical signaling; endothelial cells; activation; interferon gamma; indoleamine dioxygenase; gamma

Journal Title: Transplantation proceedings
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.