LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lubrication theory for Bingham plastics

Photo from wikipedia

Abstract The rheological behavior of many lubricants used in hydrodynamic bearings can reasonably be modeled using the Bingham plastic material model. This behavior is characterized by a strong discontinuity, from… Click to show full abstract

Abstract The rheological behavior of many lubricants used in hydrodynamic bearings can reasonably be modeled using the Bingham plastic material model. This behavior is characterized by a strong discontinuity, from a pure solid state to a viscous fluid state depending on the local shear stress. In literature three methods have been presented to model a Bingham plastic lubricated film. A full CFD and thus expensive, numerical simulation has been used. A general Reynolds equation based simulation has been used, however with a less accurate numerical regularization of the material discontinuity. Or a general Reynolds equation based simulation has been used, but with a severe reduction of the geometric complexity. In this paper, an ’exact’ thin film lubrication simulation for a Bingham plastic fluid is presented. The model is said to be exact in the sense that it requires no additional approximations to those used in the derivation of the general Reynolds equation, and requires no numerical regularization of the Bingham plastic fluid model and can still be used on any lubricating film geometry. Simulations on both infinite and finite journal bearings shows that the results of this new method are in good accordance with literature, demonstrating the validity of the method.

Keywords: lubrication; simulation used; bingham; model; bingham plastic

Journal Title: Tribology International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.