LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plateau honing of a diesel engine cylinder with special topography and reasonable machining time

Photo from wikipedia

Abstract Deep valleys and flattened peaks are essential characteristics of the finished cylinder bore surface, which is known as the plateau surface. Generally, a honing process is done in three… Click to show full abstract

Abstract Deep valleys and flattened peaks are essential characteristics of the finished cylinder bore surface, which is known as the plateau surface. Generally, a honing process is done in three steps to achieve a plateau surface, which is costly and time-consuming and acts as a bottleneck for cylinder block machining line. The real challenge is to select optimum levels of honing process parameters to achieve desired surface characteristics with minimum machining time. The aim of this study is to examine the influence of the input parameters of the honing process on the surface texture of diesel engine cylinder bore. The Rk family parameters are used for surface roughness evaluation and the honing crosshatch angle, in accordance with engine design requirements, which was fixed for all experiments. Optimization by means of the desirability function technique allowed determining most appropriate conditions to desirable roughness (surface quality) and/or minimize machining time (productivity). Based on the findings of this study the conventional three-stage honing process has been replaced by the two-stage process. Using the proposed two-stage honing process the intended plateau surface in cylinder bores are achieved and a remarkable reduction in the honing process time is obtained. Consequently, the process efficiency is improved significantly.

Keywords: topography; surface; time; cylinder; honing process

Journal Title: Tribology International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.