Abstract Ferrography plays an important role in wear analysis for machine condition monitoring, in which effective and efficient wear particle analysis is regarded as a crucial pre-requisite. An automatic wear… Click to show full abstract
Abstract Ferrography plays an important role in wear analysis for machine condition monitoring, in which effective and efficient wear particle analysis is regarded as a crucial pre-requisite. An automatic wear particle detection and classification process is developed here using a cascade of two convolutional neural networks and a support vector machine (SVM) classifier. The neural networks are used for particle detection and recognition while particle classification is conducted in the SVM. This structure ensures that the computation expense is reduced and the accuracy is improved. The proposed network is verified using a large number of ferrograph images. Results show that high classification accuracies are obtained. Furthermore, the proposed approach can be further developed and applied in online machine condition monitoring applications.
               
Click one of the above tabs to view related content.