LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Growth of plasma-enhanced chemical vapour deposition and hot filament plasma-enhanced chemical vapour deposition transfer-free graphene using a nickel catalyst

Photo from wikipedia

Abstract This paper investigates the effects of radiant heat from implementing a hot filament (HF) in an existing Plasma-enhanced Chemical Vapour Deposition (PECVD) system on the growth of transfer-free graphene.… Click to show full abstract

Abstract This paper investigates the effects of radiant heat from implementing a hot filament (HF) in an existing Plasma-enhanced Chemical Vapour Deposition (PECVD) system on the growth of transfer-free graphene. The fabrication and properties of the transfer-free graphene grown using the HF-PECVD technique with nickel (Ni) as a catalyst were compared to that of transfer-free graphene grown using the existing PECVD method. The Ni film was used as a catalyst to assist the formation of graphene at the Ni-substrate interface for both techniques. Instead of undergoing an additional Ni annealing process, an increase in deposition temperature was achieved from the radiant heat of the hot filament in the HF-PECVD, changing the Ni grain size from nano-sized to micro-sized and reducing the formation of Ni grain boundaries. The increase in Ni grain size and the reduction in the grain boundary formation promoted the formation of less defective graphene with a more ordered structure. The formation of well-ordered graphitic-structured graphene also corresponded to the disappearance of O contamination in the Ni catalyst due to the higher deposition temperature. The enhancement in the structure, morphology, and chemical bonding of the transfer-free graphene grown using the HF-PECVD technique resulted in improved electrical properties of the film.

Keywords: enhanced chemical; plasma enhanced; chemical vapour; graphene; deposition; vapour deposition

Journal Title: Thin Solid Films
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.