LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nd-Cr co-doped BiFeO3 thin films for photovoltaic devices with enhanced photovoltaic performance

Photo by seemurray from unsplash

Abstract BiFeO3 films and Nd-Cr co-doped BiFeO3 films were prepared by sol-gel method followed by spinning process on fluorine-doped tin oxide glass substrates. By testing the ultraviolet-visible absorption spectra, it… Click to show full abstract

Abstract BiFeO3 films and Nd-Cr co-doped BiFeO3 films were prepared by sol-gel method followed by spinning process on fluorine-doped tin oxide glass substrates. By testing the ultraviolet-visible absorption spectra, it was found that Nd-Cr co-doping will increase the light absorption rate of the film and reduce the optical band gap. The reduced bandgap can facilitate the transport of carriers. After Nd-Cr co-doping, the leakage current of the film is effectively reduced, which is near four orders of magnitude lower than the leakage current density of the pristine BiFeO3 film. The reduction of leakage current will enhance the ferroelectric polarization. The enhancement of ferroelectric polarization is more favorable for the separation of photogenerated carriers. Compared with the pristine BiFeO3 film, the short circuit photocurrent density, open circuit photovoltage and power conversion efficiency of Nd-Cr co-doped BiFeO3 film are all clearly improved. The Nd-Cr co-doped BiFeO3 films exhibited largely enhanced photovoltaic property, which favored the practical application of BiFeO3-based films in photovoltaic devices.

Keywords: films photovoltaic; enhanced photovoltaic; film; bifeo3; doped bifeo3; photovoltaic devices

Journal Title: Thin Solid Films
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.