Abstract We investigated the characteristics of carbon nanotube mat/dielectric elastomer composite as an electrically actuatable platform. The composites were fabricated by forming carbon nanotube (CNT) mats on electrically actuating dielectrics… Click to show full abstract
Abstract We investigated the characteristics of carbon nanotube mat/dielectric elastomer composite as an electrically actuatable platform. The composites were fabricated by forming carbon nanotube (CNT) mats on electrically actuating dielectrics films. Their electromechanical actuating properties were observed not to be dependent on the CNT mats themselves but the interface between the CNT mats. To achieve good electromechanical actuation, it is desirable to have electrodes that are not compact. Rather, they should have open voids, which allow structural relaxation upon expansion. Our results suggest that in utilizing 1-D materials as electrode in transparent electromechanical actuation, it is important not only to maintain the electrical percolation but also to provide a relaxed electrode structure. Our approach can be used as a guide line in designing transparent tactile touch panels, in which mechanical compliance with electrical conduction is desirable.
               
Click one of the above tabs to view related content.