LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochromic and pseudocapacitive behavior of hydrothermally grown WO3 nanostructures

Photo by kellysikkema from unsplash

Abstract We report the direct synthesis of various WO3 nanostructures (nanoplates, nanobricks, and stacked nanosheets) on fluorine-doped tin oxide conducting substrates for electrochromic and pseudocapacitive energy storage applications. These nanostructures… Click to show full abstract

Abstract We report the direct synthesis of various WO3 nanostructures (nanoplates, nanobricks, and stacked nanosheets) on fluorine-doped tin oxide conducting substrates for electrochromic and pseudocapacitive energy storage applications. These nanostructures were formed by varying the pH of the hydrothermal solution, which led to monoclinic and triclinic crystal structures. Among these structures, vertically aligned WO3 nanoplates showed good electrochromic properties, with rapid and reversible response of the colored and bleached states in 0.5 M H2SO4 electrolyte. Moreover, the vertically aligned WO3 nanoplates exhibited promising energy storage behavior as a negative electrode material with a higher areal capacitance of 72.6 mF cm−2 in 0.5 M Na2SO4 electrolyte and better electrochemical performance than the nanobricks and stacked nanosheets. The two-dimensional WO3 nanoplates exhibit strong potential for use in smart windows and negative-electrode pseudocapacitors.

Keywords: wo3 nanostructures; electrochromic pseudocapacitive; pseudocapacitive behavior; wo3 nanoplates; wo3; behavior hydrothermally

Journal Title: Thin Solid Films
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.