LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Beyond surface nanoindentation: Combining static and dynamic nanoindentation to assess intrinsic mechanical properties of chemical vapor deposition amorphous silicon oxide (SiOx) and silicon oxycarbide (SiOxCy) thin films

Photo from wikipedia

Nanoindentation is a well-known technique to assess the mechanical properties of bulk materials and films. Despite that, nanoindentation of thin films is not straightforward, given that the measured properties are… Click to show full abstract

Nanoindentation is a well-known technique to assess the mechanical properties of bulk materials and films. Despite that, nanoindentation of thin films is not straightforward, given that the measured properties are composite information from a film/substrate system and depend on the indentation depth. By using dynamic indentation experiments and analytical or empirical models, we assessed the intrinsic film properties of chemical vapor deposited silicon oxide (SiO x) and silicon oxycarbide (SiO x C y) thin films with thicknesses ranging from 60 to 700 nm. In this work, the Bec rheological model and several mixing laws were reviewed. Measured Young modulus appeared to be affected by the substrate properties more than hardness: for the thinnest films, moduli were measured at ca. 90 GPa whereas intrinsic moduli were calculated at ca. 50 GPa. Using calculated intrinsic film modulus and hardness, it was possible to establish correlations between these properties, the chemical composition and the structural organization of the films.

Keywords: thin films; nanoindentation; mechanical properties; silicon; chemical vapor; properties chemical

Journal Title: Thin Solid Films
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.