Abstract The kinematic approach of limit analysis is explored in three-dimensional face stability of large-diameter tunnels in soils with linearly increasing undrained strength with depth. Due to the slurry density… Click to show full abstract
Abstract The kinematic approach of limit analysis is explored in three-dimensional face stability of large-diameter tunnels in soils with linearly increasing undrained strength with depth. Due to the slurry density by a shield machine, the support pressure is not uniformly distributed on the face. Such a non-uniform distribution cannot be ignored, especially for the large-diameter shield tunnels. This paper includes it into the stability analysis of the tunnel face subjected to local and global failures. The failure mechanism with a spherical cap is adopted to obtain the least upper-bound solutions of local stability of the tunnel face. To evaluate its global stability, a continuous velocity field with a toric envelope is employed and yields the critical pressures on tunnel face against collapse and blow-out. The calculated results are compared with the solutions derived from other well-established methods for verification of the presented approach. An approximation formula based on the derived upper-bound solutions, is given to directly calculate the necessary collapse and blow-out pressures, which can be used for preliminary design in practice. An example is given to illustrate its convenient use.
               
Click one of the above tabs to view related content.