LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Face stability analysis of large-diameter slurry shield-driven tunnels with linearly increasing undrained strength

Photo from wikipedia

Abstract The kinematic approach of limit analysis is explored in three-dimensional face stability of large-diameter tunnels in soils with linearly increasing undrained strength with depth. Due to the slurry density… Click to show full abstract

Abstract The kinematic approach of limit analysis is explored in three-dimensional face stability of large-diameter tunnels in soils with linearly increasing undrained strength with depth. Due to the slurry density by a shield machine, the support pressure is not uniformly distributed on the face. Such a non-uniform distribution cannot be ignored, especially for the large-diameter shield tunnels. This paper includes it into the stability analysis of the tunnel face subjected to local and global failures. The failure mechanism with a spherical cap is adopted to obtain the least upper-bound solutions of local stability of the tunnel face. To evaluate its global stability, a continuous velocity field with a toric envelope is employed and yields the critical pressures on tunnel face against collapse and blow-out. The calculated results are compared with the solutions derived from other well-established methods for verification of the presented approach. An approximation formula based on the derived upper-bound solutions, is given to directly calculate the necessary collapse and blow-out pressures, which can be used for preliminary design in practice. An example is given to illustrate its convenient use.

Keywords: face stability; stability; large diameter; analysis; face

Journal Title: Tunnelling and Underground Space Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.