LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The damage-failure criteria for numerical stability analysis of underground excavations: A review

Photo from wikipedia

Abstract Failure of rock mass in deep underground excavations could be attributed to a broad range of performance malfunction, from plastic yielding of rock, generation of macro cracks on the… Click to show full abstract

Abstract Failure of rock mass in deep underground excavations could be attributed to a broad range of performance malfunction, from plastic yielding of rock, generation of macro cracks on the boundary of the excavation, gravity driven rockfalls or even complete stress-induced collapse. The failure criteria determine the stress level (or strain level) at which the rock mass loses its load-carrying (or strain-carrying) capacity. Determination of the state of underground stability can be successfully achieved through implementation of appropriate failure criteria within the numerical analyses’ tools. The choice of failure criteria in numerical stability analysis plays a key role in defining the behaviour of an underground excavation. A failure criterion will be useful only if selected based on the correct mechanism of failure. Plus, a right choice of failure criterion, significantly reduces the errors of quantifying an excavations behaviour. Therefore, this paper offers a critical review of the most common stress-based and strain-based failure criteria used in numerical stability analysis of underground excavations. Particular attention is paid to characterize different mechanisms of underground failure and recommendations are formulated for each failure mode. In addition, this paper addresses the theoretical considerations for the applicability of different failure criteria and highlights the practical limitations for their numerical implementation.

Keywords: stability analysis; failure criteria; underground excavations; numerical stability; failure

Journal Title: Tunnelling and Underground Space Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.