LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical simulation of methane explosion suppression by ultrafine water mist in a confined space

Photo from wikipedia

Abstract This numerical study focused on the heat transfer process between the ultrafine water mist and explosion flame, and the suppression mechanism of ultrafine water mist and the effect of… Click to show full abstract

Abstract This numerical study focused on the heat transfer process between the ultrafine water mist and explosion flame, and the suppression mechanism of ultrafine water mist and the effect of mist parameter on methane explosion. Hence, a three-dimensional numerical model for methane explosion suppression by ultrafine water mist was established. Large eddy simulation and partially premixed combustion models were used to determine the explosion flow field characteristics and methane explosion process, respectively. The Euler-Lagrange equation was used to solve the continuous and discrete phases, and the coupling calculation was realized by alternately solving these two phase models. In addition, the validity of the numerical model and calculation method was verified by the experimental results. Mist vaporization, heat transfer between the gas and liquid phases, and influencing factors (including the mist diameter (d), mist velocity (v), and mist concentration (QMist)) were analyzed quantitatively. The results indicate that heat exchange mainly occurs in the reaction zone, and the heat exchange rate can be affected by the mist parameters, which further affects the temperature inside the vessel. Moreover, the vapor pressure generated from mist vaporization is an important component of the explosion pressure in the closed vessel, and it is comprehensively affected by the mist vaporization rate and temperature. Simultaneously, the mist parameters are also the key influencing factors for the above process.

Keywords: ultrafine water; methane explosion; explosion; mist; water mist

Journal Title: Tunnelling and Underground Space Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.