LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy absorption analysis of a novel foam-filled corrugated composite tube under axial and oblique loadings

Photo by mbrunacr from unsplash

Abstract Composite thin-walled structures are of much interest in differnet applications as well as energy absorption devices for their great crashworthiness and light weight. In this paper, a new corrugated… Click to show full abstract

Abstract Composite thin-walled structures are of much interest in differnet applications as well as energy absorption devices for their great crashworthiness and light weight. In this paper, a new corrugated composite cylindrical tube has been introduced in order to improve crashworthiness along with a stable crushing. In cylindrical composite tubes, the effects of corrugations regarding charactristics of energy absorption have underwent quasi-static axial and oblique loading investigations. For this reason, composite cylindrical tubes with different corrugation geometries were analyzed using finite element explicit code and the effects of corrugations on crush force effiency and specific energy absorption were comperhensively studied. The finite element model has been validated by experimental quasi-static compression tests. An efficient analytical solution for SEA during axial loading has been also derived and compared with FEM solution. Furthermore, a comparison of empty and foam-filled corrugated composite tubes has been done. Based on the obtained results, generating corrugated surfaces on tubes improved the crush force efficiency significantly in both axial and oblique crushings. Performing a parametric study on geometrical corrugation parameters of tubes has been indicated that the energy absorption of these structures depends strongly on the corrugation parameters. Furthermore the absorbed energy has been increased by using foams in both axial and oblique crushing. SEA increases by increasing the foam density while the CFE decreases.

Keywords: axial oblique; corrugated composite; energy absorption; energy

Journal Title: Thin-walled Structures
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.