LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vibration of multilayer FG-GPLRC toroidal panels with elastically restrained against rotation edges

Photo by davidvondiemar from unsplash

Abstract The vibrational behavior of multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) toroidal panels with elastically restrained against rotation edges is investigated. The first-order shear deformation theory (FSDT) of… Click to show full abstract

Abstract The vibrational behavior of multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) toroidal panels with elastically restrained against rotation edges is investigated. The first-order shear deformation theory (FSDT) of shells together with the finite element method (FEM) is employed to develop a general formulation and solution procedure. Nine-noded isoparametric shell elements with five degrees of freedom per node are used to discretize the spatial domain. After validating the approach, the influences of different distribution patterns of graphene platelets (GPLs) through the panel thickness, the geometrical parameters, and the elastic coefficients of the rotational springs are studied. It is shown that among the multilayer FG-GPLRC toroidal panels with different GPLs distribution patterns, the toroidal panels with X-type pattern have the highest frequency values whereas the minimum values belong to the shells with O-type and Λ -type for the first and second frequency parameters, respectively. Also, the numerical results reveal that by increasing the GPLs volume fraction and the elastic coefficients of rotational springs, the frequency parameters increase, and these parameters have considerable effects on the frequency parameters. Also, the mode shapes of multilayer FG-GPLRC toroidal panels for different GPLs distribution patterns are depicted.

Keywords: toroidal panels; restrained rotation; panels elastically; multilayer gplrc; elastically restrained; gplrc toroidal

Journal Title: Thin-Walled Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.