Abstract The purpose of this study was to make quantitative connections between changes in social and economic activities in northern California urban areas and related Earth system environmental responses to… Click to show full abstract
Abstract The purpose of this study was to make quantitative connections between changes in social and economic activities in northern California urban areas and related Earth system environmental responses to the COVID-19 pandemic in 2020. We tested the hypothesis that the absence of worker activities during Shelter-in-Place in the San Francisco Bay Area detectably altered the infrared heat flux from parking lots, highways, and large building rooftops, caused primarily by quantitative changes in the reflective properties in these different classes of urban surfaces. The Landsat satellite's thermal infrared (TIR) sensor imagery for surface temperature (ST) was quantified for all the large urban features in the Bay Area that have flat (impervious) surfaces, such parking lots, wide roadways, and rooftops. These large impervious surface features in the five-county Bay Area were first delineated and classified using sub-meter aerial imagery from the National Agriculture Imagery Program (NAIP). We then compared Landsat ST data acquired on (or near) the same dates from the three previous years (2017–2019) for all these contiguous impervious surfaces. Results showed that all the large parking lots, roadway corridors, and industrial/commercial rooftops across the entire Bay Area urban landscape were detected by Landsat ST time series as significantly cooler (by 5o C to 8o C) during the unprecedented Shelter-in-Place period of mid-March to late-May of 2020, compared to same months of the three previous years. The explanation for this region-wide cooling pattern in 2020 that was best supported by both remote sensing and ground-based data sets was that relatively low atmospheric aerosol lower (PM2.5) concentrations from mid-March to late May of 2020 resulted in weaker temperature inversions over the Bay Area, higher diurnal surface mixing, and lowered urban surface temperatures, compared to the three previous years.
               
Click one of the above tabs to view related content.