LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measuring the areal density of nanomaterials by electron energy-loss spectroscopy.

Photo from wikipedia

Thickness measurements of nanomaterials are usually performed using transmission electron microscopy (TEM) techniques such as convergent beam electron diffraction (CBED) patterns analysis and the log-ratio method based on electron energy-loss… Click to show full abstract

Thickness measurements of nanomaterials are usually performed using transmission electron microscopy (TEM) techniques such as convergent beam electron diffraction (CBED) patterns analysis and the log-ratio method based on electron energy-loss spectroscopy (EELS) spectrum. However, it is challenging to obtain both the thickness and elemental information, especially in non-crystalline materials or for very thin samples. In this work, we establish a series of procedures to calculate the areal density of the material by directly measuring the inelastic scattering probability in a thin sample. Core-loss EELS are fit with a quantitative model to extract atomic areal density. Knowledge of one of the parameters (volume density or sample thickness) allows a measurement of the other. The absolute error between the known thicknesses and those measured was less than 4% using two-dimensional materials with a well-defined thickness as test samples, which is much better than the log-ratio method for very thin samples. One promising advantage of this method is the thickness/areal density determination in mixed phase/element systems. We use Ag-Co bimetallic triangles and black rutile as examples to calculate the thickness map in mixture systems in different cases. We also demonstrate this technique can be applied to measure the argon gas density in spherical cavities. This allows a temperature vs pressure curve to be obtained and illustrates the unique capability of this technique.

Keywords: areal density; energy loss; density; spectroscopy; electron energy

Journal Title: Ultramicroscopy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.