This work aims to develop a rapid and efficient strategy for preparing supported metal catalysts for catalytic applications. The sonication-assisted reduction-precipitation method was employed to prepare the heterogeneous mono- and… Click to show full abstract
This work aims to develop a rapid and efficient strategy for preparing supported metal catalysts for catalytic applications. The sonication-assisted reduction-precipitation method was employed to prepare the heterogeneous mono- and bi-metallic catalysts for photocatalytic degradation of methyl orange (MO) and preferential oxidation (PROX) of CO in H2-rich gas. In general, there are three advantages for the sonication-assisted method as compared with the conventional methods, including high dispersion of metal nanoparticles on the catalyst support, the much higher deposition efficiency (DE) than those of the deposition-precipitation (DP) and co-precipitation (CP) methods, and the very fast preparation, which only lasts 10-20s for the deposition. In the AuPd/TiO2 catalysts series, the AuPd(3:1)/TiO2 catalyst is the most active for MO photocatalytic degradation; while for PROX reaction, Ru/TiO2, Au-Cu/SBA-15 and Pt/γ-Al2O3 catalysts are very active, and the last one showed high stability in the lifetime test. The structural characterization revealed that in the AuPd(3:1)/TiO2 catalyst, Au-Pd alloy particles were formed and a high percentage of Au atoms was located at the surface. Therefore, this sonication-assisted method is efficient and rapid in the preparation of supported metal catalysts with obvious structural characteristics for various catalytic applications.
               
Click one of the above tabs to view related content.