In this research, the poly (acrylamide-co-itaconic acid)/multi-walled carbon nanotubes (P(AAm-co-IA)/MWCNTs) as a novel superabsorbent hydrogel nanocomposite was synthesized by graft copolymerization of acrylamide (AAm) and itaconic acid (IA) mixture in… Click to show full abstract
In this research, the poly (acrylamide-co-itaconic acid)/multi-walled carbon nanotubes (P(AAm-co-IA)/MWCNTs) as a novel superabsorbent hydrogel nanocomposite was synthesized by graft copolymerization of acrylamide (AAm) and itaconic acid (IA) mixture in the presence of the MWCNTs using ammonium persulfate (APS) as a free radical initiator and methylenebisacrylamide (MBA) as a crosslinker under ultrasound-assisted condition. The blank P(AAm-co-IA) hydrogel and its composite with the MWCNTs were characterized by means of SEM, FTIR, XRD and TGA methods. The effects of different parameters such as pH, time, the MWCNTs content and salt solutions on swelling behavior were investigated. The stability of the hydrogel increased by any increase in the MWCNTs content, which might be attributed to the hydrophobic nature of the MWCNTs as well as the increase of the crosslinker density. The water retention capacity (WRC) of the P(AAm-co-IA) hydrogel increased in the presence of the MWCNT (10 wt%). The synthesized hydrogel nanocomposite was studied for Pb (II) adsorption from aqueous solution. The effects of different parameters such as contact time (5-90 min), Pb (II) initial concentration (25-175 mg/L) and initial pH (1.5-4.5) of solution on Pb (II) adsorption were investigated by batch method. In comparison to P(AAm-co-IA) hydrogel, the P(AAm-co-IA)/MWCNTs hydrogel nanocompoite showed better adsorption behavior toward Pb (II). One of the most important aspects of this research was to investigate the effects of ultrasonic waves on polymer matrix and its ability.
               
Click one of the above tabs to view related content.