Design and fabrication of novel inorganic nanomaterials for the low-level detection of food preservative chemicals significant is of interest to the researchers. In the present work, we have developed a… Click to show full abstract
Design and fabrication of novel inorganic nanomaterials for the low-level detection of food preservative chemicals significant is of interest to the researchers. In the present work, we have developed a novel grass-like vanadium disulfide (GL-VS2) through a simple sonochemical method without surfactants or templates. As-prepared VS2 was used as an electrocatalyst for reduction of hydrogen peroxide (H2O2). The crystalline nature, surface morphology, elemental compositions and binding energy of the as-prepared VS2 were analyzed by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The electrochemical studies show that the GL-VS2 modified glassy carbon electrode (GL-VS2/GCE) has a superior electrocatalytic activity and lower-reduction potential than the response observed for unmodified GCE. Furthermore, the GL-VS2/GCE displayed a wide linear response range (0.1-260 μM), high sensitivity (0.23 μA μM-1 cm-2), lower detection limit (26 nM) and excellent selectivity for detection of H2O2. The fabricated GL-VS2/GCE showed excellent practical ability for detection of H2O2 in milk and urine samples, revealing the real-time practical applicability of the sensor in food contaminants.
               
Click one of the above tabs to view related content.