LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: construction, characterization, and sonocatalytic degradation performance.

Photo by mathieustern from unsplash

In this study, a series of oxygen-rich bismuth oxychloride Bi12O17Cl2 samples were prepared at different calcination temperatures and characterized by X-ray diffraction patterns, UV-Vis diffuse reflectance spectra, scanning electron microscope,… Click to show full abstract

In this study, a series of oxygen-rich bismuth oxychloride Bi12O17Cl2 samples were prepared at different calcination temperatures and characterized by X-ray diffraction patterns, UV-Vis diffuse reflectance spectra, scanning electron microscope, X-ray energy dispersion spectroscope, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The calcination temperature greatly affected microstructures and band structures of as-prepared samples, further influencing sonocatalytic degradation efficiencies over dye Rhodamine B. Some dependant factors such as ultrasonic power, catalyst dosage, pH value, initial concentration of Rhodamine B, and reaction temperature were systematically investigated and the robust sample Bi12O17Cl2-550 with a favorable microstructure and band structure provided the best sonocatalytic removal efficiency around 90% at the optimal condition. Based upon reactive species entrapping and hydroxyl radical detection experiments, a primary sonocatalysis mechanism was eventually speculated.

Keywords: bismuth oxychloride; oxychloride bi12o17cl2; oxygen rich; spectroscopy; rich bismuth; sonocatalytic degradation

Journal Title: Ultrasonics sonochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.