LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zirconium based porous coordination polymer (PCP) bearing organocatalytic ligand: A promising dual catalytic center for ultrasonic heterocycle synthesis.

Photo by alexrsu from unsplash

Herein, the efficient role of ultrasonic irradiation both in synthesis of Zr based porous coordination polymer (Zr-PCP) nanoparticles and boosting its catalytic activity, towards the benzimidazoles synthesis is represented. We… Click to show full abstract

Herein, the efficient role of ultrasonic irradiation both in synthesis of Zr based porous coordination polymer (Zr-PCP) nanoparticles and boosting its catalytic activity, towards the benzimidazoles synthesis is represented. We use an amine based ligand (amino-terephthalate) for PCP and we exhibit that it can have a synergistic catalytic activity. In this work, a unique nano-engineering of cooperative and synergistic catalytic activity of zirconium, as a Lewis acid, and aminophenylene, as an organocatalyst, in the synthesis of heterocycles is presented for the synthesis of benzimidazole from cascade reaction of phenylene diamine with aldehyde at ambient temperature. Zr and amine groups of the Zr-PCP are active catalytic sites which in combination with the ultrasonic irradiation leads to a high selectivity and rapid catalytic production of benzylimidazoles. N2 adsorption-desorption along with BJH analyses confirm the microporosity of the catalyst and recyclability shows that the catalyst is green and sustainable heterogeneous microporous catalyst.

Keywords: synthesis; polymer pcp; based porous; pcp; coordination polymer; porous coordination

Journal Title: Ultrasonics sonochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.