LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A review on carbon-based materials for heterogeneous sonocatalysis: Fundamentals, properties and applications.

Photo from wikipedia

Contamination of water resources by refractory organic pollutants is of great environmental and health concern because these compounds are not degraded in the conventional wastewater treatment plants. In recent years,… Click to show full abstract

Contamination of water resources by refractory organic pollutants is of great environmental and health concern because these compounds are not degraded in the conventional wastewater treatment plants. In recent years, sonocatalytic treatment has been considered as a promising advanced oxidation technique for the acceptable degradation and mineralization of the recalcitrant organic compounds. For this purpose, various sonocatalysts have been utilized in order to accelerate the degradation process. The present review paper provides a summary of published studies on the sonocatalytic degradation of various organic pollutants based on the application of carbon-based catalysts, including carbon nanotubes (CNTs), graphene (GR), graphene oxide (GO), reduced graphene oxide (rGO), activated carbon (AC), biochar (BC), graphitic carbon nitride (g-C3N4), carbon doped materials, buckminsterfullerene (C60) and mesoporous carbon. The mechanism of sonocatalytic degradation of different organic compounds by the carbon-based sonocatalysts has been well assessed based on the literature. Moreover, the details of experimental conditions such as sonocatalyst dosage, solute concentration, ultrasound power, applied frequency, initial pH and reaction time related to each study have also been discussed in this review. Finally, concluding remarks as well as future challenges in this research field regarding new areas of study are also discussed and recommended.

Keywords: based materials; review carbon; carbon based; materials heterogeneous; degradation; carbon

Journal Title: Ultrasonics sonochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.