LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A study on the spectral, microstructural, and magnetic properties of Eu-Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach.

Photo from archive.org

In this study, an examination on the spectral, microstructural, and magnetic characteristics of Eu-Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites (Ba0.5Sr0.5NdxEuxFe12-2xO19 (x = 0.00-0.05) HFs) fabricated by an ultrasonic-assisted approach has been presented. An UZ… Click to show full abstract

In this study, an examination on the spectral, microstructural, and magnetic characteristics of Eu-Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites (Ba0.5Sr0.5NdxEuxFe12-2xO19 (x = 0.00-0.05) HFs) fabricated by an ultrasonic-assisted approach has been presented. An UZ SONOPULS HD 2070 ultrasonic homogenizer with frequency of 20 kHz and power of 70 W was used. The chemical bonding, structure and the morphology of the products were evaluated by Fourier-Transform Infrared (FT-IR) Spectroscopy, XRD (X-ray diffraction), scanning and transmission electron microscopy and techniques. The textural properties of the prepared nanomaterials were examined by using the Brunauer-Emmett-Teller (BET) method. The magnetic properties were studied using a vibrating sample magnetometer (VSM) at room temperature (RT) and low temperature 10 K. The magnitudes of various magnetic parameters including Ms (saturation magnetization), Mr (remanence) and Hc (coercivity) were estimated and evaluated. The M-H loops revealed the hard ferrimagnetic nature for all products at both temperatures. The Ms and Mr values showed a decreasing tendency with increasing degree of Eu3+ and Nd3+ substitutions whereas Hc values displayed an increasing trend. At RT, Ms, Mr and Hc values lie in the ranges of 63.0-68.8 emu·g-1, 24.6-39.2 emu·g-1 and 2252.4-2782.1 Oe, respectively. At 10 K, the values of Ms, Mr and Hc lie between 87.5-97.1 emu·g-1, 33.5-40.1 emu·g-1 and 2060.6-2417.2 Oe, respectively. The observed magnetic properties make the prepared products promising candidates to be applied in the recording media.

Keywords: double substituted; microstructural magnetic; substituted ba0; magnetic properties; ba0 5sr0; spectral microstructural

Journal Title: Ultrasonics sonochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.