LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrasound-accelerated synthesis of uniform SrMnO3 nanoparticles as water-oxidizing catalysts for water splitting systems.

Photo by a2eorigins from unsplash

One of the major issue in the 21st century is the humans request to green energy. The best form of green, sustainable and safe energy is hydrogen source due to… Click to show full abstract

One of the major issue in the 21st century is the humans request to green energy. The best form of green, sustainable and safe energy is hydrogen source due to its ecological and economical aspects. Herein, In order to obtain a highly water-oxidizing catalysts for water splitting systems, the sonochemical procedure applied for fabrication of practical SrMnO3 nanoparticles. Also, the influence of various green capping agents (fruit juices and vegetable wastes) was studied on the formation of uniform particles. In the present work ultrasonic probe with 60 W/cm2 intensity and 18 kHz frequency was used for sample synthesis. Further, catalytic behavior of these nanomaterials investigated in water splitting reaction for O2 evolution by modifying the operational variables. The best catalytic behavior observed by those nanoparticles that indicated the smallest size and the most uniform morphology (Max amount of TON = 7.556). By utilizing the ultrasonic irradiation, the catalytic behavior of SrMnO3 nanoparticles improved (TON (ultrasonic bath) = 8.430, TON (ultrasonic probe) = 11.315). Therefore, nano-SrMnO3 was introduced as an efficient and novel nanocatalyst for O2 evolution reaction.

Keywords: water oxidizing; srmno3; water splitting; water; oxidizing catalysts; srmno3 nanoparticles

Journal Title: Ultrasonics sonochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.