LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of frequency sweep on sonochemiluminescence and sonoluminescence.

Photo from wikipedia

Bubbles generated by acoustic cavitation may be efficient in light production by direct emission (sonoluminescence) or indirect emission (sonochemiluminescence) depending on operating parameters such as acoustic pressure and surface tension.… Click to show full abstract

Bubbles generated by acoustic cavitation may be efficient in light production by direct emission (sonoluminescence) or indirect emission (sonochemiluminescence) depending on operating parameters such as acoustic pressure and surface tension. These conditions are quite difficult to reach at very high frequencies, even by concentrating the acoustic power at a given location via focusing the acoustic field thanks to the transducer shape (High Intensity Focused Ultrasound). The current work aims at probing the cavitation bubble behaviour under short frequency sweeps by monitoring sonochemiluminescence and sonoluminescence activities. When the frequency was swept in reverse (negative sweep), an enhancement in the SCL, relative to the SCL observed under a single frequency irradiation, was observed. Conversely, a positive frequency sweep resulted in the quenching of SCL intensity. The degree of SCL enhancement and quenching was also dependent on the rate at which the frequency was being swept and on the change in the size of cavitation bubbles. The size of cavitation bubbles varied with varying starting sweep frequency (3.4, 3.6 and 4.2 MHz), affecting both SCL and sonoluminescence (SL) emissions. The addition of a surfactant (sodium dodecyl sulphate) affected the observed results, possibly due to its influence on coalescence between cavitation bubbles. The results suggest that the enhancement and quenching are related to the response of bubbles generated by the starting frequency to the direction of the frequency sweep and the influence of the sweep rate on growth and coalescence of bubbles, which affected the population of the active bubbles.

Keywords: cavitation; sonoluminescence; frequency; sonochemiluminescence; frequency sweep

Journal Title: Ultrasonics sonochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.